31 research outputs found

    Improving Optimization Bounds using Machine Learning: Decision Diagrams meet Deep Reinforcement Learning

    Full text link
    Finding tight bounds on the optimal solution is a critical element of practical solution methods for discrete optimization problems. In the last decade, decision diagrams (DDs) have brought a new perspective on obtaining upper and lower bounds that can be significantly better than classical bounding mechanisms, such as linear relaxations. It is well known that the quality of the bounds achieved through this flexible bounding method is highly reliant on the ordering of variables chosen for building the diagram, and finding an ordering that optimizes standard metrics is an NP-hard problem. In this paper, we propose an innovative and generic approach based on deep reinforcement learning for obtaining an ordering for tightening the bounds obtained with relaxed and restricted DDs. We apply the approach to both the Maximum Independent Set Problem and the Maximum Cut Problem. Experimental results on synthetic instances show that the deep reinforcement learning approach, by achieving tighter objective function bounds, generally outperforms ordering methods commonly used in the literature when the distribution of instances is known. To the best knowledge of the authors, this is the first paper to apply machine learning to directly improve relaxation bounds obtained by general-purpose bounding mechanisms for combinatorial optimization problems.Comment: Accepted and presented at AAAI'1

    Improved Peel-and-Bound: Methods for Generating Dual Bounds with Multivalued Decision Diagrams

    Full text link
    Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization. However, the field of decision diagrams is relatively new, and is still incorporating the library of techniques that conventional solvers have had decades to build. We drew inspiration from the warm-start technique used in conventional solvers to address one of the major challenges faced by decision diagram based methods. Decision diagrams become more useful the wider they are allowed to be, but also become more costly to generate, especially with large numbers of variables. In the original version of this paper, we presented a method of peeling off a sub-graph of previously constructed diagrams and using it as the initial diagram for subsequent iterations that we call peel-and-bound. We tested the method on the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly less computational cost. In this extended version of the paper, we also propose new methods for using relaxed decision diagrams to improve the solutions found using restricted decision diagrams, discuss the heuristic decisions involved with the parallelization of peel-and-bound, and discuss how peel-and-bound can be hyper-optimized for sequencing problems. Furthermore, we test the new methods on the sequence ordering problem and the traveling salesman problem with time-windows (TSPTW), and include an updated and generalized implementation of the algorithm capable of handling any discrete optimization problem. The new results show that peel-and-bound outperforms ddo (a decision diagram based branch-and-bound solver) on the TSPTW. We also close 15 open benchmark instances of the TSPTW.Comment: 50 pages, 31 figures, published by JAIR, supplementary materials at https://github.com/IsaacRudich/ImprovedPnB. arXiv admin note: substantial text overlap with arXiv:2205.0521

    Verification of interlocking systems using statistical model checking

    Get PDF
    In the railway domain, an interlocking is the system ensuring safe train traffic inside a station by controlling its active elements such as the signals or points. Modern interlockings are configured using particular data, called application data, reflecting the track layout and defining the actions that the interlocking can take. The safety of the train traffic relies thereby on application data correctness, errors inside them can cause safety issues such as derailments or collisions. Given the high level of safety required by such a system, its verification is a critical concern. In addition to the safety, an interlocking must also ensure that availability properties, stating that no train would be stopped forever in a station, are satisfied. Most of the research dealing with this verification relies on model checking. However, due to the state space explosion problem, this approach does not scale for large stations. More recently, a discrete event simulation approach limiting the verification to a set of likely scenarios, was proposed. The simulation enables the verification of larger stations, but with no proof that all the interesting scenarios are covered by the simulation. In this paper, we apply an intermediate statistical model checking approach, offering both the advantages of model checking and simulation. Even if exhaustiveness is not obtained, statistical model checking evaluates with a parametrizable confidence the reliability and the availability of the entire system.Comment: 12 pages, 3 figures, 2 table

    Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

    Full text link
    Combinatorial optimization has found applications in numerous fields, from aerospace to transportation planning and economics. The goal is to find an optimal solution among a finite set of possibilities. The well-known challenge one faces with combinatorial optimization is the state-space explosion problem: the number of possibilities grows exponentially with the problem size, which makes solving intractable for large problems. In the last years, deep reinforcement learning (DRL) has shown its promise for designing good heuristics dedicated to solve NP-hard combinatorial optimization problems. However, current approaches have two shortcomings: (1) they mainly focus on the standard travelling salesman problem and they cannot be easily extended to other problems, and (2) they only provide an approximate solution with no systematic ways to improve it or to prove optimality. In another context, constraint programming (CP) is a generic tool to solve combinatorial optimization problems. Based on a complete search procedure, it will always find the optimal solution if we allow an execution time large enough. A critical design choice, that makes CP non-trivial to use in practice, is the branching decision, directing how the search space is explored. In this work, we propose a general and hybrid approach, based on DRL and CP, for solving combinatorial optimization problems. The core of our approach is based on a dynamic programming formulation, that acts as a bridge between both techniques. We experimentally show that our solver is efficient to solve two challenging problems: the traveling salesman problem with time windows, and the 4-moments portfolio optimization problem. Results obtained show that the framework introduced outperforms the stand-alone RL and CP solutions, while being competitive with industrial solvers

    Verification of railway interlocking systems and optimisation of railway traffic

    No full text
    Since the dawn of the nineteenth century, development of railway systems has taken a huge importance in many countries. Over the years, the number of trains, the number of tracks, the complexity of networks increase and are still increasing. Directing trains on efficient routes, stopping and cancelling them are some actions that railway operators must take in their everyday life in order to regulate the traffic. However, with its continual growth, the consequences of such actions become rapidly hard to predict. Bad decisions can lead to disastrous situations such as accidents or, in the best cases, to unnecessary delays leading to financial losses. Decisions and actions that could be taken manually in the past are now hard combinatorial problems that require computer based methods for their solving. In this context, the need of a reliable and efficient railway traffic management is crucial. Like any transportation system, three aspects must be considered: safety, availability and fluidity. Safety and availability belong to verification engineering while fluidity is related to optimisation. A plethora of research on this field already exist. However, most of it suffers of a lack of scalability. They can only be used for small or medium stations. This thesis presents innovative approaches for tackling this problem. For each aspect, we propose a method, that is feasible in practice for stations of any size. Concretely, verification of safety is performed with a dedicated algorithm while availability is verified with Statistical Model Checking. Fluidity optimisation is carried out with Constraint Programming. The performance of these methods are analysed through three stations of the Belgian railway network.(FSA - Sciences de l'ingénieur) -- UCL, 201

    Peel-And-Bound: Generating Stronger Relaxed Bounds with Multivalued Decision Diagrams

    Get PDF
    Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization. However, the field of decision diagrams is relatively new, and is still incorporating the library of techniques that conventional solvers have had decades to build. We drew inspiration from the warm-start technique used in conventional solvers to address one of the major challenges faced by decision diagram based methods. Decision diagrams become more useful the wider they are allowed to be, but also become more costly to generate, especially with large numbers of variables. We present a method of peeling off a sub-graph of previously constructed diagrams and using it as the initial diagram for subsequent iterations that we call peel-and-bound. We test the method on the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly less computational cost

    Scheduling the Equipment Maintenance of an Electric Power Transmission Network Using Constraint Programming

    Get PDF
    corecore